
Numerical methods in LATEX using Lua

Chetan Shirore1 and Ajit Kumar∗2

1Department of Mathematics, K.T.H.M. College, Nashik, India.
Email: mathsbeauty@gmail.com

2Department of Mathematics, Institute of Chemical Technology, Mumbai,
India.

Email: a.kumar@ictmumbai.edu.in

Abstract

This article introduces ways of performing numerical methods inside LATEX documents
using a scripting programming language Lua. It mainly focuses on methods that use
the load function in Lua to evaluate functions within the mathematics environment of
Lua. These methods align with our work of creating computational packages for LATEX
using Lua. The article includes a few simple Luacodes which illustrates different ways
of using Lua for performing numerical methods in LATEX. The one purpose of using Lua
for LATEX documents is to reduce the dependence of LATEX users on external software for
computations. The other purpose is to develop methods and tools that can be deployed for
pedagogical purposes.

1 Background and introduction
Lua [1] is a portable scripting language that we have used for developing computational pack-
ages for LATEX. We have developed luamaths [5], luacomplex [2], luaset [8], luagcd [3], lua-
truthtable [9], lualinalg [4], and luamodulartables [6] packages. The installation of these pack-
ages are similar to the installation of plain latex packages. The packages can be loaded by using
\usepackage{package name} in preamble of the LaTeX documents. LaTeX files need to be
compiled using the LuaLaTeX engine. The research article “Basic Mathematical Computations
inside LATEX using Lua” [10] describes some of these packages.

The paper is organized into different sections. The use of the load function in Lua to evaluate
mathematical functions inside LATEX documents is described in the second section. The third
section introduces the luanumint [7] package with a few illustrations and customized usage.
The fourth section gives some limitations of the methods used. The fifth section provides
conclusions and the last section describes the proposed future work.

∗Corresponding Author

The Electronic Journal of Mathematics and Technology, Volume 18, Number 1, ISSN 1933-2823

2 Load function in Lua
The load function takes a chunk as its input. A chunk in Lua is simply a sequence of statements.
These statements are executed in order. The load function compiles the chunk and converts it
into a function that can be called to execute the chunk. It has the following syntax.
load (strfun [, src [, mode [, env]]])

The strfun can be a string or function. If it is a string, it represents the Lua code that is to be
executed. If strfun is a function, the load function calls it repeatedly to get the chunk pieces.
Every time it returns a string that concatenates with the previous results. An empty string,
nil, or no value indicates the end of the Lua code to be executed. The src is used as the source
for error messages and debug information in the lua_Debug interface. The mode can be: ‘b’
(only binary chunks), ‘t’ (only text chunks), or ‘bt’ (both binary and text). The default is “bt”.
The ‘env’ specifies the environment for variables in the chunk.

The load function can be used to evaluate mathematical functions. It is handy to evaluate
mathematical functions in LATEX documents as the only input that LATEX can accept from
Lua is a string. Luacode 1 illustrates the use of the load function to evaluate the real-valued
functions of real variable(s). It defines LATEX commands: \LuaFnOne and \LuaFnTwo to evaluate
the real-valued functions of one and two real variables, respectively. These commands have an
optional parameter trun to truncate the decimal places to the desired number.

Luacode 1: Load function in Lua.

1 \documentclass{article}
2 \usepackage{luacode,xkeyval}
3 \begin{luacode}
4 --function to round numbers.
5 function numrnd(num, numDecimalPlaces)
6 local mult = 10^(numDecimalPlaces or 0)
7 return math.floor(num * mult + 0.5) / mult
8 end
9 \end{luacode}

10 \makeatletter
11 % ========= KEY DEFINITIONS =========
12 \define@key{someop}{trun}{\def\mop@onex{#1}}%
13 % ========= KEY DEFAULTS =========
14 \setkeys{someop}{trun=4}%
15 % ========= Defining Command =========
16 \newcommand{\luaFnOne}[3][]{{%
17 \setkeys{someop}{#1}%
18 \directlua{%
19 exp = "("..\luastring{#2}..")"
20 local f = load("return function(x) return "..exp.."end",nil,"t",math)()
21 tex.print(numrnd(f(#3),\mop@onex))
22 }%
23 }%

30

The Electronic Journal of Mathematics and Technology, Volume 18, Number 1, ISSN 1933-2823

24 }%
25 \newcommand{\luaFnTwo}[4][]{{%
26 \setkeys{someop}{#1}%
27 \directlua{%
28 exp = "("..\luastring{#2}..")"
29 local f = load("return function(x,y) return " ..exp.. "end",nil,"t",math)()
30 tex.print(numrnd(f(#3,#4),\mop@onex))
31 }%
32 }%
33 }%
34 \makeatother
35 \begin{document}
36 \luaFnOne[trun=4]{x^2+x^3}{0.576} \\
37 \luaFnTwo[trun=4]{sin(x)+cos(y)}{0.96}{0.36}
38 \end{document}

On compiling the LATEX document (Luacode 1) with LuaLaTeX engine, it outputs the follow-
ing.

0.5229
1.7551

3 Numerical methods in LATEX
We have effectively used the load function with the mathematics environment of Lua in the
development of the luanumint package [7], which facilitates the numerical integration of the real-
valued functions of a real variable over the closed and bounded intervals. The package provides
commands to find numerical integration using the mid-point, trapezoidal, and Simpson’s one-
third and three-eighth rules. The package can assist in creating various problems on numerical
integration with their solutions. The results obtained using different methods of numerical
integration can be compared. It can save users’ efforts of calculating numerical integrals in
external software and copying them inside LATEX documents.

Table 1 illustrates commands in the luanumint package.

LATEX input Result

$\int_{1}^{3}\sqrt{12+\cos(x^3)} dx
=\luaMidpt[a=1,b=3,n=4]{sqrt(12+cos(x^3))}$

∫ 3

1

√
12 + cos(x3)dx = 6.9448

31

The Electronic Journal of Mathematics and Technology, Volume 18, Number 1, ISSN 1933-2823

$\int_{1}^{2}\sin(x)dx
=\luaTrapz[a=1,b=2,n=5]{sin(x)}$

∫ 2

1
sin(x)dx = 0.9533

$\int_{0}^{1}\cos(x+1) dx=\luaSimpsonOneThird
[a=0,b=1,n=4,trun=6]{cos(x+1)}$

∫ 1

0
cos(x+ 1)dx = 0.067828

$\int_{0}^{3}\sin(x) dx
=\luaSimpsonThreeEighth
[a=0,b=3,trun=6]{sin(x)}$

∫ 3

0
sin(x)dx = 7.337166

Table 1: Illustrations of commands in the luanumint package.

Apart from using the load function in Lua, other techniques in Lua are used to produce step-
by-step calculations of the numerical integration.

Luacode 2: The luaTrapzSteps command.

1 \begin{dmath*}
2 \int_{0}^{1}\sqrt{1+\cos^3(x)}dx
3 \luaTrapzSteps[a=0,b=1,n=5,trun=6]{sqrt(1+(cos(x))^3)}
4 \end{dmath*}

Luacode 2 generates the output shown in Table 2.

∫ 1

0

√
1 + cos3(x)dx = 0.1 [f(0) + 2f(0.2) + 2f(0.4) + 2f(0.6) + 2f(0.8) + f(1.0)]

= 0.1 (1.414214 + 2.786671 + 2.669371 + 2.499761 + 2.313596 + 1.075978)
= 1.275959

Table 2: The luaTrapzSteps command.

The breqn package is loaded to display and align step-by-step calculations properly. Advanced
users can customize the code to achieve the desired formatting of step-by-step computations. It
can also be used to illustrate the convergence of numerical integrals to the actual value.

Luacode 3: Customized use of the luanumint package.

1 \documentclass{article}

32

The Electronic Journal of Mathematics and Technology, Volume 18, Number 1, ISSN 1933-2823

2 \usepackage{luanumint,longtable,booktabs}
3 \begin{luacode}
4 function iterint()
5 local itbl = {}
6 v = 1
7 for m = 1, 6, 1 do
8 itbl[v] = m .. "&\\luaTrapz[a=0,b=1,trun=6,n=" .. m .. "]{sin(x^2)}"
9 v = v + 1

10 end
11 tex.print(table.concat(itbl, "\\\\"))
12 end
13 \end{luacode}
14 \newcommand{\itern}{\directlua{iterint()}}
15 \begin{document}
16 \begin{longtable}{cc}
17 \toprule
18 n & Approximate value of the integrall \\ \midrule
19 \itern
20 \bottomrule
21 \end{longtable}
22 \end{document}

Luacode 3 generates the output shown in Table 3. It lists the values of numerical integration
of the function f(x) = sin(x2) over [0, 1] using the trapezoidal rule with different number of
sub-intervals.

n Approximate value of the integral

1 0.420735
2 0.33407
3 0.320525
4 0.315975
5 0.313903
6 0.312785

Table 3: Customized use of the luanumint package.

Apart from numerical integration, it is also possible to perform other methods, such as the
bisection method, to find roots of equations. Luacode 4 provides this code. Further, it is
possible to customize the code to produce a table of iterations.

Luacode 4: Customized use of the luanumint package.

1 \documentclass{article}
2 \usepackage{luacode,xkeyval}
3 \begin{luacode}
4 function numrnd(num, numDecimalPlaces)

33

The Electronic Journal of Mathematics and Technology, Volume 18, Number 1, ISSN 1933-2823

5 local mult = 10^(numDecimalPlaces or 0)
6 return math.floor(num * mult + 0.5) / mult
7 end
8 function bisect(f, a, b, e)
9 if f(a) * f(b) >= 0 then

10 error("The values of a and b are not selected properly.")
11 end
12 local k = 1
13 local test = true
14 while test do
15 c = (a + b) / 2
16 if f(a) * f(c) < 0 then
17 b = c
18 else
19 a = c
20 end
21 k = k + 1
22 test = (math.abs(f(c)) > e)
23 end
24 return c
25 end

26 \end{luacode}
27 \makeatletter
28 % ========= KEY DEFINITIONS =========
29 \define@key{someop}{trun}{\def\mop@onex{#1}}%
30 % ========= KEY DEFAULTS =========
31 \setkeys{someop}{trun=4}%
32 % ========= Defining Command =========
33 \newcommand{\luaBisect}[5][]{{%
34 \setkeys{someop}{#1}%
35 \directlua{%
36 exp = "("..\luastring{#2}..")"
37 local f = load("return function(x) return "..exp.."end",nil,"t",math)()
38 tex.print(numrnd(bisect(f,#3,#4,#5),\mop@onex))
39 }%
40 }%
41 }%
42 \makeatother
43 \begin{document}
44 The root of function $\luaBisect[trun=6]{x^3-2.2369}{1}{3}{0.001}$ by the

bisection method is 1.307861, when the specified error is 0.001.
45 \end{document}

Luacode 4 generates the following output.

34

The Electronic Journal of Mathematics and Technology, Volume 18, Number 1, ISSN 1933-2823

The root of function f(x) = x3 − 2.2369 by the bisection method is 1.307861, when the
specified error is 0.001.

4 Limitations and known issues
The computational packages that we developed use double precision for floating-point numbers.
It represents each number with 64 bits, 11 of which are used for the exponent. Double-precision
floating-point numbers can represent numbers with roughly 16 significant decimal digits. This
representation of numbers is inherited from Lua. The handling of small and big numbers
inside packages depends entirely on Lua. The math library in Lua defines constants with the
maximum math.maxinteger and the minimum math.mininteger values for an integer. The
result wraps around when there is a computational operation on integers that would result in a
value smaller than the mininteger or larger than the maxinteger. It means that the computed
result is the only number between the miniinteger and maxinteger.

5 Conclusions
The load function in Lua can effectively be used for evaluation of mathematical functions inside
LATEX documents. This paper included a few simple Luacodes to illustrate numerical methods
inside LATEX documents. A variety of different applications are possible. The load function in
Lua can also be used for plotting graphs inside LATEX documents. Luacodes can be constructed
to execute other numerical methods inside LATEX documents.

6 Future work
After developing computational packages for LATEX, we aim to combine these packages into
a single module. This would help to achieve the uniform syntax of commands in different
packages and strengthen the error-handling mechanism of different packages. In order to add
better support for handling small and big numbers, we plan to use some external number-
precision library.

An attempt will also be made to support symbolic computations and develop a portable com-
puter algebra system inside LATEX. Lua supports procedural programming, object-oriented
programming, functional programming, data-driven programming, and data description. It is
thus possible to develop a tool with Graphical User Interface (GUI) to facilitate interactive
computations. The tool can also have a facility to import and export computations in LATEX-
compatible format. Another proposed work is developing a Lua-based package for 3-D plotting
inside LATEX documents. The package would serve the purpose of illustrating various concepts
graphically inside LATEX documents.

35

The Electronic Journal of Mathematics and Technology, Volume 18, Number 1, ISSN 1933-2823

References
[1] Lua Programming Language. url: https://www.lua.org (visited on 03/26/2022).
[2] luacomplex package page. url: https : / / ctan . org / pkg / luacomplex (visited on

12/29/2022).
[3] luagcd package page. url: https://ctan.org/pkg/luagcd (visited on 12/30/2022).
[4] lualinalg package page. url: https://ctan.org/pkg/lualinalg (visited on 01/01/2024).
[5] luamaths package page. url: https://ctan.org/pkg/luamaths (visited on 12/27/2022).
[6] luamodulartables package page. url: https://ctan.org/pkg/luamodulartables (vis-

ited on 12/31/2022).
[7] luanumint package page. url: https : / / ctan . org / pkg / luanumint (visited on

08/04/2023).
[8] luaset package page. url: https://ctan.org/pkg/luaset (visited on 12/28/2022).
[9] luatruthtable package page. url: https://ctan.org/pkg/luatruthtable (visited on

09/18/2022).
[10] Chetan Shirore and Ajit Kumar. “Basic Mathematical Computations inside LATEX using

Lua”. In: The Electronic journal of Mathematics and Technology 17.1 (2023). issn: 1933-
2807. url: https://php.radford.edu/~ejmt/deliverAbstract.php?paperID=eJMT_
v17n1n1.

36

The Electronic Journal of Mathematics and Technology, Volume 18, Number 1, ISSN 1933-2823

https://www.lua.org
https://ctan.org/pkg/luacomplex
https://ctan.org/pkg/luagcd
https://ctan.org/pkg/lualinalg
https://ctan.org/pkg/luamaths
https://ctan.org/pkg/luamodulartables
https://ctan.org/pkg/luanumint
https://ctan.org/pkg/luaset
https://ctan.org/pkg/luatruthtable
https://php.radford.edu/~ejmt/deliverAbstract.php?paperID=eJMT_v17n1n1
https://php.radford.edu/~ejmt/deliverAbstract.php?paperID=eJMT_v17n1n1

	Background and introduction
	Load function in Lua
	Numerical methods in LaTeX
	Limitations and known issues
	Conclusions
	Future work

